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AbstractÐThe dynamic and stochastic shortest path problem (DSSPP) is de®ned as ®nding the expected
shortest path in a tra�c network where the link travel times are modeled as a continuous-time stochastic
process. The objective of this paper is to examine the properties of the problem and to identify a technique
that can be used to solve the DSSPP given information that will be available in networks with Intelligent
Transportation System (ITS) capabilities. The paper ®rst identi®es a set of relationships between the mean
and variance of the travel time of a given path and the mean and variance of the dynamic and stochastic link
travel times on these networks. Based on these relationships it is shown that the DSSPP is computationally
intractable and traditional shortest path algorithms cannot guarantee an optimal solution. A heuristic algo-
rithm based on the k-shortest path algorithm is subsequently proposed to solve the problem. Lastly, the
trade-o� between solution quality and computational e�ciency of the proposed algorithm is demonstrated on
a realistic network from Edmonton, Alberta. # 1998 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

In recent years there has been a resurgence of interest in the minimum path problem in trans-
portation engineering. This is directly attributed to the recent developments in Intelligent
Transportation Systems (ITS), and especially in the ®eld of in-vehicle Route Guidance Systems
(RGS). Central to any RGS is the algorithm that is used to ®nd the optimal route from the origin
to the destination. For most RGS currently under development the optimal route between an
origin and destination is de®ned as the one with minimum expected travel time. This optimal route
is commonly calculated by applying a Dijkstra type shortest path algorithm where the link travel
times are treated deterministically (Dijkstra, 1959). The disadvantage of this type of deterministic
treatment is that while it makes the shortest path problem tractable, it may, in fact, generate sub-
optimal solutions.

Conversely, when both the dynamic and stochastic nature of link travel times are modeled
explicitly, the optimal shortest path algorithms can become computationally ine�cient and/or
impractical for use within an actual application. The objective of this paper is to investigate the
problem of ®nding the expected shortest path in a tra�c network where the dynamic and sto-
chastic nature of link travel times is modeled explicitly and to develop an algorithm which can
provide improved solutions without signi®cantly adding to the overall computation time.

The shortest path problem has been studied extensively in the ®elds of computer science,
operations research, and transportation engineering. Most of the literature has focused on the
problem in which the link travel cost (or weight) is assumed to be static and deterministic. Many
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e�cient algorithms have been developed (Bellman, 1958; Dijkstra, 1959; Dreyfus, 1969) and in this
paper, these algorithms are referred to as the standard shortest path algorithms. It should be noted
that the standard shortest path algorithms also have been found to be applicable to compute
shortest paths in time-dependent (but not stochastic) networks (Dreyfus, 1969; Orda and Rom,
1990; Kaufman et al., 1993; Ziliaskopoulos and Mahmassani, 1993; Chabini, 1997).

Frank (1969) and Mirchandani (1976) studied the problem of determining the probability dis-
tribution of the shortest path length in a stochastic network where link travel times are random
variables but not time dependent. Loui (1983), Mirchandani and Soroush (1986), and Murthy and
Sarkar (1996) studied the variations of the shortest path problems in stochastic networks by con-
sidering di�erent types of cost functions. It was found that if the objective is to identify the
expected shortest path (or linear cost function), then the problem simply reduces to a deterministic
shortest path problem in a network where the random link travel times are replaced by their
expected values. Therefore, the e�cient standard shortest path algorithms still can be used to ®nd
the expected shortest paths in a static and stochastic network.

Hall (1986) ®rst investigated the shortest path problem in a transportation network where the
link travel times are random and time-dependent and demonstrated that the standard shortest
path algorithm may fail to ®nd the expected shortest path in these networks. An optimal dynamic
programming based algorithm was proposed to ®nd the shortest paths and this algorithm was
demonstrated on a small transit network example. Although not explicitly stated, the paper only
considers the case where link travel times are modeled as discrete-time stochastic processes and the
proposed algorithm is viable only for solving problems of small networks because of computa-
tional constraints.

The objective of this paper is to extend the shortest path problem in dynamic and stochastic
networks (DSSPP) where link travel times are de®ned as continuous time stochastic processes. The
paper ®rst de®nes the DSSPP. Next, a general probability-based formula for calculating the mean
and variance of the travel time for a given path is developed. The emphasis is on estimating these
path parameters using the mean and variance of link travel time as a function of time of dayÐ
information typically available in transportation networks with ITS. An extensive analysis of the
properties associated with the DSSPP is provided and a heuristic algorithm based on the k-short-
est path algorithm is proposed. Finally, the trade-o� between solution quality and computational
e�ciency of the proposed algorithm is demonstrated on a realistic network from Edmonton,
Alberta.

2. PROBLEM DEFINITION

Consider a tra�c network represented by a directed graph consisting of a ®nite set of nodes and
links. Each link in the network has an associated generalized cost which could be a combination of
travel time, direct cost and travel distance. Without loss of generality, this paper will use travel
time to represent this generalized cost. It is assumed that the link travel times on some or all of the
links in the network are random variables and the probability distributions of link travel times are
dependent on the time of day (i.e. the time a link is entered). Consequently, the travel time on these
type of links can be modeled as a continuous-time stochastic process. Denote {Xa t� �; t 2 T} as a
stochastic process of travel time on link �, where Xa t� � is the travel time for vehicles entering link �
at time t, and T is a continuous parameter set. In this paper T is the time range examined although
for generality it will be assumed that T � R� � 0;1� �. For each time instance t;Xa t� � is con-
sidered as a continuous random variable with its ®rst-order probability density function (PDF)
denoted by fXa

xa; t� �. A network where the link travel time is modeled as a stochastic process is
referred to as a dynamic and stochastic network in this paper.

Furthermore, it is assumed that the travel times on individual links at a particular point in time
are statistically independent. It should be noted that this assumption does not mean that the cor-
relation between link travel times will be ignored. Because the probability distributions of the link
travel times are modeled as functions of the time of day, the time of day correlation between
individual links is explicitly taken into account. For example, on a typical network it would be
expected that the travel times on individual links would all be higher than average during peak
periods and lower than average during o�-peak periods because of temporal changes in tra�c
volume. This time of day correlation in link travel times is modeled directly within the individual
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links' stochastic processes. It should be noted that in order to consider the correlation between
individual links travel times at a particular point in time a more disaggregate analysis and more
comprehensive data than that typically collected and stored in ITS facilities would be required.

The mean of the stochastic process {Xa t� �; t 2 T} corresponding to its ®rst-order PDF is repre-
sented by �Xa

�t� and is de®ned as follows:

�Xa
t� � � E Xa t� �� � �

��1
0

xafXa
xa; t� �dxa �1�

One measure of dispersion of the random variable Xa t� � about its mean �Xa
t� � is the variance

denoted as �Xa
t� � which is de®ned in eqn (2)

�Xa
t� � � E Xa t� � ÿ �Xa

t� �ÿ �2h i
�

��1
0

xa ÿ �Xa
t� �ÿ �2

fXa
�xa; t�dxa �2�

It is important to note that the PDF of the link travel time, fXa
xa; t� �, will not be available in most

practical situations. However, for transportation networks with ITS capabilities where link travel
time data are automatically collected, the mean and standard deviation of link travel times over
discrete periods will be readily available. That is, estimates of the mean and variance shown in
eqns (1) and (2) will be available over pre-de®ned discrete, rather than continuous, time intervals.

Let p denote a simple path from an origin node 1 to a destination node N and P is the set of all
paths p. The problem is to ®nd path p� which has the lowest expected travel time from node 1 to
node N corresponding to a given departure time at node 1. This problem will be referred to as
dynamic and stochastic shortest path problem (DSSPP) in this paper. If the random variable Wp

denotes the travel time on path p then the expected travel time along path p is de®ned in eqn (3).

E Wp

� � � ��1
0

wpfWp wp

ÿ �
dwp �3�

where fwp
wp

ÿ �
is the PDF of Wp.

Now, the DSSPP can be stated formally as

DSSPP� � p� � arg min E Wp

� �
p 2 P

�4�

In order to ®nd a solution to the DSSPP for a given O±D pair, it is a necessary condition to cal-
culate the expectation of travel time of a given path (e.g. E Wp

� �
) based on the travel times of

individual links within the path. This could be done easily if the travel time on links are only sto-
chastic but not time-dependent or only time-dependent but not stochastic. However, it is not a
trivial problem when the link travel times are both time-dependent (or dynamic) and stochastic. As
a result, the problem of estimating the expected travel time of a given path based on the link travel
time information will be analyzed ®rst in the following section.

3. TRAVEL TIME ON A GIVEN PATH

Consider a particular path p from an origin node 1 to a destination node N in a dynamic and
stochastic network as shown in Fig. 1 and assume that a series of travel experiments are conducted
along this path. Each experiment represents a travel departing from the origin node at the exact
same time and traveling along the path to the destination node N. Due to the dynamic and sto-
chastic attributes of the network as de®ned above, the outcomes of the experiment, which include
both the arrival time at each node and the travel time on each link, are random variables. The
travel time on the given path also will be a random variable and its distribution will depend on the
link travel time distribution of each link on the route and the departure time at the origin node. As
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the estimation of the route travel time is equivalent to the estimation of the arrival time at the
destination node, the arrival time will be used in the following discussion.

Let the random variable Yi denote the arrival time at node i. Assuming that there is no waiting
time at the node, then Yi is equal to the departure time at node i or the time link a is entered. The
departure at the origin node 1, Y1, is assumed to be deterministic and known a priori. It should be
noted that this deterministic assumption might be relaxed without loss of generality. The PDF of
Yi is represented by fYi

yi� �. As a random variable, the travel time is completely speci®ed by its
distribution (fYi

yi� �). The problem is therefore to estimate fYi
yi� � i � 2 . . .N� � based on the depar-

ture time at node 1 and the travel times on the individual links. However, it is not a trivial problem
to derive the PDF of Yi when the link travel times are both dynamic and stochastic (or stochastic
process), as it is illustrated in the following example.

A two-link network is shown in Fig. 2. The travel time on link a �ta� is normally distributed with
a mean travel time of 5 min and a standard deviation of 1 min. The travel time on link b; tb, is a
function of the time entering the link T2� � : tb � 10� 0:5 T2 ÿ 5� �2. If it is assumed that a trip
departs at Node 1 at time zero, T2 will be equal to ta. Based on the given information on the travel
time, the arrival time at Node 3 (T3) is equal to T2 � 10� 0:5 T2 ÿ 5� �2. In spite of the fact that T3

is a simple function of the normally distributed random variable ta, its PDF is not easily obtain-
able. It is clear that identifying the probability density function of the arrival time at downstream
links will become quickly intractable and this problem will occur even if simple functions are used.

Given the above problems in estimating the path travel time PDF, the focus of this paper is on
estimating the mean and variance of the arrival time at node i and these will be denoted as E Yi� �
and Var Yi� �, respectively. These parameters are de®ned in eqns (5) and (6).

E Yi� � �
��1
0

yifYi
yi� �dyi �5�

Var Yi� � � E Yi ÿ E Yi� �� �2� � � ��1
0

yi ÿ E Yi� �� �2fYi
yi� �dyi �6�

Denote random variable Z� as the travel time on link � under a given experiment. It should be
noted the distribution of Za is conditional to the speci®c experiment and therefore cannot be
known directly until the parameters of the experiment, which include both the path and the
departure time, are de®ned. This is in contrast to the link travel time which is represented as a

Fig. 2. A two-link dynamic and stochastic network.

Fig. 1. A path p from origin node 1 to destination node N.
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continuous-time stochastic process {Xa t� �; t 2 T}, and is solely a function of the time entering the
link. Because the link travel time on link a is only dependent on the time the link is entered, the
probability distribution of Za under a given time (i.e. Yi � yi) will be the same as the probability
distribution of Xa yi� � as shown in eqn (7)

P Za < xjYi � yi
� 	 � P Xa yi� � < x

� 	
; x�R �7�

Equation (7) also implies that the random variable ZajYi � yi has the same mean and variance as
the random variable Xa yi� �, or

E ZajYi � yi� � � �Xa
yi� � �8�

Var ZajYi � yi� � � �Xa
yi� � �9�

For each experiment described above, the path travel time is equal to the sum of the travel time of
all the links along the path. This path travel time can be obtained by calculating the arrival time at
each node along the path using a recursive formula until the destination node is reached (i.e.
j � N) as shown in eqn (10).

Yj � Yi � Za �10�

The following sections present several approximation models for estimating the mean and variance
of the route travel time based on eqn (10) when the link travel time is dynamic and stochastic.

3.1. Mean of route travel time
Considering eqn (10), the relationship between the mean arrival times at node i and the mean

arrival time at the downstream node j is:

E Yj

� � � E Yi� � � E Za�� �11�

This relationship can be transformed further (Ross, 1989):

E Yj

� � � E Yi� � � E E ZajYi� �� � �12�

Based on eqn (8), the recursive formula for calculating the expected travel time of the route is
therefore:

E Yj

� � � E Yi� � � E �Xa
Yi� �

� � �13�

The second term in eqn (13) is de®ned by the integral shown in eqn (14)

E �Xa
Yi� �

� � � ��1
0

�Xa
yi� �fYi

yi� �dyi �14�

Obviously eqn (14) may be applied only if the PDF of the arrival time, fYi
yi� �, is available, and this

means a recursive formula for estimating the PDF of the arrival time also must be derived. As
discussed above, this is impossible in realistic transportation networks because only information
available about the link travel times is the estimate of the ®rst two moments of the link travel time
PDF. These estimates, which are in fact the historical sample mean and sample variance or fore-
cast mean and variance, are not continuous but rather are calculated for discrete periods
throughout the day. Furthermore, even if the PDF of the link travel time as a function of the time
of day could be derived from existing data, the derivation of the PDF of the arrival time shown in
eqn (13) is mathematically impractical, as illustrated (Fig. 2). Consequently, a recursive formula
for calculating the arrival time at a particular node based on approximation techniques is required.
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In order to determine the second part of eqn (13), the function �Xa
t� � may be expanded as a

Taylor's series around the point t � E Yi� � as shown in eqn (15). Note that this step requires that
the function �Xa

t� � is di�erentiable at point t � E Yi� �.

�Xa
t� � � �Xa

E Yi� �� � � �0Xa
E Yi� �� �: tÿ E Yi� �� � � 1

2
�00Xa

E Yi� �� �: tÿ E Yi� �� �2� . . . �15�

If the series is truncated at the linear terms (or assuming that the second and higher order deriva-
tives are equal to zero) and then applied in eqn (14), the ®rst order approximation of E �Xa

Yi� �� � is
obtained:

E �Xa
Yi� �

� � � ��1
0

�Xa
E Yi� �� � � �0Xa

E Yi� �� �: yi ÿ E Yi� �� �
n o

fYi
yi� �dyi

� �Xa
E Yi� �� �:

��1
0

fYi
yi� �dyi � 0

� �Xa
E Yi� �� �

�16�

Therefore, the ®rst order approximation model of the recursive formula is:

E Yj

� � � E Yi� � � �Xa
E Yi� �� � �17�

The ®rst order approximation model shown in eqn (17) can be improved by including higher order
terms of the Taylor series. For example, if the second order term in eqn (15) is included, the second
order approximation of E �Xa

Yi� �� � is accordingly:

E �Xa
Y� �� � � ��1

0

�Xa
E Yi� �� � � �0Xa

E Yi� �� �: yi ÿ E Yi� �� � � 1

2
�00Xa

E Yi� �� �: yi ÿ E Yi� �� �2
� �

:fYi
yi� �dyi

� �Xa
E Yi� �� �:

��1
0

fYi
yi� �dyi � 0� 1

2
�00Xa

E Yi� �� �:
��1
0

yi ÿ E 2Yi� �� �2fYi
yi� �dyi

� �Xa
E Yi� �� � � 1

2
�00Xa

E� �Yi��:Var Yi� �
�18�

Using eqn (18) the second order approximation model of the mean arrival time can be obtained as
shown below:

E Yj

� � � E Yi� � � �Xa
E Yi� �� � � 1

2
�00Xa

E Yi� �� �:Var Yi� � �19�

The relative quality of the ®rst and second approximation models can be illustrated using the same
example shown in Fig. 2. The expected arrival time at Node 3 can be directly obtained as shown below:

E T3� � � E ta � 10� 0:5��ta ÿ 5�2� �
� 0:5�E�t2a� ÿ 4�E�ta� � 22:5

� 15:5

Alternatively, E T3� � can be estimated by using the ®rst order approximation model [eqn (17)] and
it may be seen that the expected arrival time is underestimated in this example.
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E T3� � � E T2� � � �b E T2� �� �
� E T1� � � �a E T1� �� � � �b E T2� �� �
� 0� 5� 10� 0:5� 5ÿ 5� �2� 15

Conversely, if the second order approximation model [eqn (19)] is used the expected arrival time is
equal to the actual arrival time as shown below.

E T3� � � E T2� � � �b E T2� �� � � 1

2
�00b E T2� �� �Var T2� �

� E T1� � � �a E�T1�� � � �b E T2� �� � � 1

2
�00b E T2� �� ��2a

� 0� 5� 10� 0:5� 5ÿ 5� �2� 1

2
� 1:0� 12 � 15:5

Based on the two approximation models that were developed above the following observations
may be obtained.

Remark 1. The ®rst order approximation model for the expected arrival time at node i is
equivalent to that obtained assuming a dynamic and deterministic treatment. That is, the expected
route travel time is found by substituting the average link travel time given a particular arrival
time in place of the link travel time random variable and then summing over all links to calculate
the route travel time. From eqn (19), it can be expected that this model may be acceptable when
the variance of the arrival time is small relative to the mean, or the mean link travel time is
approximately a linear function of time of day (i.e. �Xa

E Yi� �� � � 0).
Remark 2. The reasonableness of the second order approximation model shown in eqn (19) can

be illustrated using the following simple example. Consider a network with one link connecting
two nodes i and j. Assume that the time entering the link, Yi, may be modeled as a normally dis-
tributed random variable with mean represented by E Yi� �. The link travel times are assumed to be
deterministic and dynamic and the second derivative of the link travel time when the vehicle enters
the link at time yi is zero (i.e. �00Xa

yi� � � 0. In this example the three potential dynamic link travel
time patterns are linear, convex, and concave, as shown in Fig. 3. It can be found that when the
link travel time is constant, the link travel time is the same for any arrival time. Consequently, the
expected link travel time is � E Yi� �� �, which is the same as that obtained from eqn (19) when

Fig. 3. The e�ect of link travel time pattern on the estimation of the expected link travel time.
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�00 E Yi� �� � � 0. When the link travel time is a convex function of arrival time, i.e. �00 E Yi� �� � > 0,
then the travel time under any realization of the arrival time always will be greater than � E Yi� �� �
and therefore the expected travel time should be greater than � E Yi� �� �. This result is compatible
with the result from eqn (19) because the last term in eqn (19), 12�

00 E Yi� �� �Var Yi� �, is always greater
than zero. A similar explanation for the case when the link travel time is concave also may be
demonstrated.

3.2. Variance of route travel time
In order to use the second order approximation method the variance of the arrival time is

required. Additionally, when deciding among competing routes it also would be desirable to have
an estimate of the variability of the arrival time at node N (which is equivalent to the route travel
time variability). The variance of the arrival time at a downstream node may be derived using eqn
(20) which is based on the recursive formula shown in eqn (10).

Var Yj

� � � Var Yi� � � Var Za� � � 2COV Yi;Za� � �20�

The last two parts of eqn (20) can be transformed further based on eqns (8) and (9) (Ross, 1989):

Var Za� � � E Var ZajYi� �� � � Var E ZajYi� �� �
� E Var Xa Yi� �� �� � � Var E Xa Yi� �� �� �
� E �Xa

Yi� �
� �� Var �Xa

Yi� �
� � �21�

and

COV Yi;Za� � � E Yi:Za� � ÿ E Yi� �E Za� �
� E E Yi:ZajYi� �� � ÿ E Yi� � E ZajYi� �� �
� E Yi:E :ZajYi� �� � ÿ E Yi� �E �Xa

Yi� �
� �

� E Yi�Xa
Yi� �

� �ÿ E Yi� �E �Xa
Yi� �

� � �22�

The variance of the arrival time at node j is shown in eqn (23).

Var Yj

� � � Var Yi� � � E �Xa
Yi� �

� �� Var �Xa
Yi� �

� �� 2E Yi�Xa
Yi� �

� �ÿ 2E Yi� �E �Xa
Yi� �

� � �23�

Employing similar reasoning as that in the mean route travel time analysis, it is easy to show that
it will be a signi®cant challenge to identify the functions �Xa

Yi� � and �Xa
Yi� � under realistic

assumptions. If the functions �Xa
Yi� � and �Xa

Yi� � are replaced with truncated Taylor series
expansions about point E Yi� �, then approximation models of the recursive model shown in eqn
(23) can be obtained. The ®rst order approximation model is obtained by assuming that the second
and higher derivatives of �Xa

t� � and �Xa
Yi� � are equal to zero, as shown in eqn (24).

Var Yj

� � � A:Var Yi� � � �Xa
E Yi� �� � �24�

where

A � 1� �0Xa
E Yi� �� �

n o2
By assuming the third and higher derivatives of �Xa

t� � and �Xa
Yi� � are equal to zero, the second

order approximation of eqn (23) can be obtained as shown in eqn (25).

Var Yj

� � � 1� �0Xa
E Yi� �� �

� �2
� 1

2
�00Xa

E Yi� �� �:ÿ 1

4
�00Xa
�E �Yi��:Var�Yi�

� �
:Var Yi� �

� �Xa
E Yi� �� �

� 1� �0Xa
E Yi� �� �

� �
:�00Xa

E�Yi�� �:E Yi ÿ E Yi� �� �3� �
� 1

4
�00Xa

2 E Yi� �� �:E Yi ÿ E Yi� �� �4� �
�25�
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As shown in eqn (25), the second order approximation, although potentially leading to a better
solution, would involve identifying the third and fourth central moments of the arrival time Yi.
This means that in order to use eqn (24) a recursive formula for estimating the third and fourth
order moments of the arrival times, and by extension the third and fourth order model of the link
travel times, are required. However, if we assume that an estimate of the coe�cient of skewness
(�1) and the coe�cient of kurtosis (�2) is available, then the second order model is shown below.

Var Yj

� � � 1� �0Xa
E Yi� �� �

� �2
� 1

2
�00Xa

E Yi� �� � ÿ 1

4
�00X2

a
E Yi� �� �:Var Yi� �

� �
:Var Yi� �

� �Xa
E Yi� �� �

� 1� �0Xa
E Yi� �� �

� �
:�00Xa

E Yi� �� �: �1Var3 Yi� �
ÿ �1

3

� 1

4
�002Xa

E Yi� �� �:�2Var2 Yi� �

Additionally, if it is further assumed that the arrival time is symmetric (�1 � 0) and that Yi is
neither platykurtic or leptokuric (i.e. �2 � 3) then the second order approximation model can be
further simpli®ed as shown below. Note that these latter assumptions would be good approxima-
tions if the arrival time was approximately normally distributed.

Var Yj

� � � A� B� �:Var Yi� � � �Xa
E Yi� �� � �26�

where A was de®ned in eqn (24) and B is de®ned below.

B � 1

2
�00Xa

E Yi� �� � � �002Xa
E Yi� �� �:Var Yi� �

n o
The application of the approximation models can be illustrated using the example shown in Fig. 2.
The real value of the variance of the arrival time at Node 3 can be directly obtained as shown
below.

Var T3� � � Var ta � 10� 0:5� ta ÿ 5� �2� �
� E ta � 10� 0:5� ta ÿ 5� �2ÿ �2h i

ÿ E ta � 10� 0:5� ta ÿ 5� �2� �� 	2
� 0:25� E ta ÿ 5� �4� �� E ta ÿ 5� �3� �� 16� E ta ÿ 5� �2� �� 30� E ta ÿ 5� �� � � 225ÿ 15:52

� 0:25� 3� 14 � 0� 16� 0ÿ 15:25

� 1:5

If the ®rst order approximation model [eqn (24)] is used, the estimate of Var T3� � is 50% smaller
than the true value as shown below.

A � 1� �0b E T2� �� �� 	2
� 1� �0b E tb� �� �� 	2
� 1� 0f g2
� 1

Var Yj

� � � A:Var T2� � � �b E T2� �� �
� 1� 1� 0

� 1

If the second order approximation model [eqn (26)] is used, then estimate of Var T3� � is equal to the
correct value.
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B � 1

2
�00b E T2� �� � � �00 2b E T2� �� �:Var T2� �
� 	

� 1

2
0� 1� 1f g

� 0:5

Var Yj

� � � A� B� �:Var T2� � � �b T2� �� �
� 1� 0:5� � � 1� 0

� 1:5

Based on the above approximation models, the following observations may be obtained.
Remark 3. The ®rst order approximation model of eqn (24) shows that the variance of the route

travel time is dependent not only on the variance associated with the link travel time but also on
the variation associated with the time of day. This model can be partially veri®ed by using an
example similar to that described in Remark 2. Consider a one-link situation. Assume that the
time entering the link, Y, may be modeled as a uniformly distributed random variable over the
range a; b (i.e. U a; bf g). In addition, the link travel time (X) is assumed to be deterministic and can
be represented by a linear function of the time the link is entered as shown in Fig. 4. If the link is
entered at time yi, the link travel time is equal to kyi. It is relatively straightforward to show that
the arrival time at the exit node of the link also is uniformly distributed but with di�erent para-
meters, (i.e.U a� ka; b� kbf g). Therefore, the variance of the arrival time at the exiting node of
the link is essentially 1� k� �2 times greater than the variance of the arrival time at the entering
node of the link. The same conclusion can be obtained directly from eqn (24) as shown in eqn (27).

Var Yj

� � � 1� �0Xa
E Yi� �� �

n o2
:Var Yi� � � 1� kf g2:Var Yi� � �27�

Remark 4. It can be anticipated that the di�erence between the second order approximation model
[eqn (26)] and the ®rst order approximation model [eqn (24)] may be trivial in applications on
realistic tra�c networks. This is because the variance in link travel time for a particular depar-
ture time is relatively small compared to the variance in link travel time associated with the time
of day. Therefore, the second order derivatives could be expected to be negligible. However, in the

Fig. 4. Link travel time pattern and link travel time variance.
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situation where the link travel times on the network changes relatively rapidly, such as when the
peak period is starting or ending, the second order approximation will provide a better estimate.

3.3. Link travel time approximation
The application of the approximation models developed above requires that the derivatives of

the mean and variance of the link travel time must be available. While the mean and standard
deviation of link travel time data are available in most realistic transportation networks they are
typically stored in a discrete form. Consequently, the discrete link travel time mean and variance
have to be approximated by smooth functions before they can be used in the procedure developed
in this paper. The following section discusses how the link travel time may be approximated using
a di�erential function representing the recurring tra�c congestion situation.

Under normal tra�c situations, the link travel times may be assumed to be stable from day to
day and therefore the historical link travel data can be used. These historical data may be obtained
from various data sources such as roadside detectors, probe vehicles, or even tra�c models. Due
to inherent ¯uctuations in tra�c demand and errors in measurement related to each data source,
the link travel time obtained is not a ®xed value even for the same time moment of two similar
days. Figure 5(a) shows a hypothetical example of the travel time data for a link. To use these data
to estimate the mean and variance of the link travel time, the time horizon is usually divided into
time periods so that the number of data points for each period is high enough to provide statisti-
cally con®dent estimates and to minimize data management problems. For example, the mean and
variance of link travel times from the Houston TransGuide ATMS project and the San Antonio
TranStar ATMS project is available in 5 min intervals (Turner et al., 1997). As shown in Fig. 5(b),
the time dependent link travel time is modeled as a discrete or step function. When the arrival time
falls into a speci®c time period, the average link travel time of that time period can be used. An
improvement on this method is to use a pairwise linear function, as shown in Fig. 5(c) (Rilett,
1992).

In this paper the application of the second order approximation models requires the mean and
variance of the link travel time to have a second order derivative and therefore a second order
polynomial is used to approximate the link travel time. If the mean link travel time is � Y� � where
Y is the time entering the link, then the general form of the function is:

� � b0 � b1Y� b2Y
2 �28�

For the purpose of the route travel time estimation, the major point of interest is the link travel
time pattern in the vicinity of the mean arrival time on the link. It will be neither necessary nor
e�cient to ®t all the data with one continuous function and therefore a three-point approximation
method will be used in this paper. If the time in which the link is entered falls in time period k, the
link travel times from time period kÿ 1 to time period k� 1 are approximated by eqn (28) which
goes through these three points as shown in Fig. 5(d). Because the system consists of three linear
equations with three variables, the parameters can be readily identi®ed. If �k represents the mean
link travel time for interval k with the middle time of the interval noted as yk, the solution is shown
in eqn (29).

bf g � T� �ÿ1 �f g �29�

where:
bf g= b0; b1; b2f g0
T� � =f 1; ykÿ1; y2kÿ2

ÿ �
; 1; yk; y

2
k

ÿ �
; 1; yk�1; y2k�1
ÿ �g0

f�g=f�kÿ1; �k; �k�1g0

Therefore, once the arrival time at node i is known, the mean and variance of the link travel time
and their derivatives can be quickly calculated without any signi®cant additional computation
burden.

It should be noted that the approximation method proposed above is a relatively simple
approach and a more comprehensive method could be used to approximate the link travel time
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under di�erent situations. For example, the variance of the arrival time and the size of the link
travel time interval also can be taken into account during the approximation procedure. For
situations where the travel time interval is smaller or the arrival time variance is larger, more than
three intervals may need to be considered in the approximation method. The underlying relation is
schematically illustrated in Fig. 6. In this situation it can be seen that a function which ®ts the
intervals from kÿ 2 to k� 2 would result in a better approximation. It should be noted that the
models developed in this paper can be easily adapted to handle these latter approximation meth-
ods. The only modi®cation will be to change the function format shown in eqn (28) and the
parameter estimation methods shown in eqn (31).

Fig. 5. Schematic illustration of link travel time approximation methods.
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4. DSSPP: PROPERTIES

From eqn (19), the following properties of the DSSPP may be observed.
Property 1. If the mean of the link travel time of at least one link in a network is non-linear, the

standard shortest path algorithms may fail to ®nd the expected shortest path between two nodes in
the network.

This property can be illustrated using an example network shown in Fig. 7. The network is
composed of two sub paths (p1 and p2) from the origin node s to an intermediate node i, and one
link (i; j) from node i to the destination node j. Assume that the travel time on p1 is deterministic
and that the travel time on p2 is stochastic. The travel time on link (i; j), � t� �, is deterministic but

Fig. 6. Link travel time approximation and arrival time pattern.

Fig. 7. A simple dynamic and stochastic network.
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changes with time in a non-linear fashion as shown in Fig. 7. If the expected arrival time at node i
through p1, y

p1� �
i , is marginally less than through p2 (y

p2� �
i ) then subpath p1 is the minimum

expected route from node s to node i. On the other hand, eqn (19) shows that the expected mini-
mum arrival time at node j not only depends on the expected arrival time at node i, but also on the
variance of the arrival time at node i and the second derivative of the mean travel time on link (ij).
Given that the travel time on link (ij) is concave and hence its second derivative is negative, it is
possible that subpath p2 is on the expected minimum path from s to j. In short, Bellman's ``prin-
ciple of optimality'' which states that any subpath of a shortest path must be a shortest path
(Denardo, 1982), does not hold in a DSSPP.

The above property also implies that the standard shortest path algorithms could be applicable
if the link travel time function � t� � is linear, or in a more relaxed sense, close to linear within the
local range.

Property 2. The DSSPP is computationally intractable. Consider a simple acyclic type of net-
work shown in Fig. 8. The network has N nodes sequentially labelled from 1 to N, with 2 links
between each successive pair of nodes. The problem is to ®nd the expected shortest path from node
1 to node N. If the network is deterministic, the problem can be solved by ®nding the shortest path
to node 2 ®rst, then node 3, and onward until node N. The computation time is O(n). This type of
procedure will not work in a dynamic and stochastic network because the optimal path to node i
does not have to be part of the optimal path to node i� 1. This means that all the 2Nÿ1 paths from
1 to N must be examined before the optimal path can be de®nitely identi®ed. The computation
time therefore grows exponentially with the number of nodes N, which indicates that the DSSPP is
computationally intractable (Gary and Johson, 1979).

5. A HEURISTIC ALGORITHM TO CALCULATE THE EXPECTED SHORTEST PATH

In Section 4 it was shown that standard shortest path algorithm may not identify the expected
shortest path on a dynamic and stochastic network. In addition, the DSSPP is intractable in the
sense that there is no polynomial time algorithm, like the standard shortest path algorithm, to
solve this problem. Therefore, a heuristic algorithm was developed in this paper to identify `opti-
mal' routes.

The heuristic algorithm proposed in this paper is based on the idea of examining the potential
better paths instead of enumerating all the possible paths. The algorithm is based on the k-shortest
path algorithm and has a parameter K indicating that K shortest paths will be examined.

The algorithm proceeds as follows:

1. Find the ®rst through K shortest paths from the origin node to the destination node, based
on the mean link travel times in the network and store in list P. These are stored in ascending
order with respect to travel time in list P.

2. Set k � 1; take the kth shortest path from list P and call it p�. Calculate the expected travel
time over p� using eqns (19) and (26) and denote this value as w�.

3. If k>K: p� is the `optimal' path, w� is the `minimum' expected travel time. Stop. Otherwise,
go to step 4.

4. Set k � k� 1, take the kth shortest path from A, and call it pk. Calculate the expected travel
time over pk by using (19) and (26), and denote this value as wk. If wk < w� then p� � pk and
w� � wk Go to step 3.

There are three issues that need to be addressed before this algorithm can be implemented. The
®rst issue is to identify the technique for ®nding the K shortest paths. In this paper Shier's k-
shortest path algorithm (a label setting algorithm) was adopted based on e�ciency considerations
(Shier, 1979).

Fig. 8. An acyclic network.
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The second issue was to identify the value of K. From a practical point of view the appropriate
K value can be based on an empirical sensitivity study. The use of a larger value for K will increase
the chances of ®nding the optimum expected shortest path, but at same time will require greater
computational e�ort. A sensitivity analysis of the solution quality and computation cost vs the K
value will be performed in the example problem.

Finally, the proposed heuristic algorithm requires applying eqns (19) and (26) presented in
Section 3, which are derived based on the assumptions that the mean and standard deviation of
the link travel time are continuous functions of time of day and have at least second order deri-
vatives. A second order polynomial was therefore used to smooth the mean and variance of the
link travel times as discussed previously.

6. COMPUTATIONAL ANALYSIS

The objective of this section is to demonstrate the solution quality and computational e�ciency
of the proposed algorithm with respect to the value of the parameter K used in the algorithm. The
heuristic developed in this paper was coded in C++ and executed under the Microsoft Windows
operating environment on a 486 compatible with 50MHz speed and 8 MB RAM.

The experiment was performed on a network from Edmonton, Alberta. This network, com-
posed of 3800 links and 1400 nodes, is used primarily for planning applications. The a.m. peak
(6:00a.m.�9:00a.m.) was selected as the study period. Due to a lack of real time data, the dynamic
and stochastic travel time patterns in the network were created based on a hypothetical change
pattern in travel time during the a.m. peak period at 15-min intervals. The mean link travel times
during the analysis period were ®rst generated for each link with maximum travel times around
triple of the free ¯ow travel times on the link, as shown in Fig. 9. It was assumed that the coe�-
cient of variation (COV) of the link travel time in the network is a random variable with values
uniformly distributed between 0.10 and 0.20. Consequently, the standard deviation of the travel
time on a speci®c link at each time interval could be estimated by multiplying the mean link travel
time at that interval with a randomly selected COV for this link. The link travel time data were
then represented as a set of discrete means and standard deviations through the a.m. peak period,
as shown in Fig. 9.

Fig. 9. Link travel time pattern.
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To demonstrate the solution quality of the heuristic algorithm a comparison is usually made
with the optimal solution. Because it is too computationally intensive to identify the expected
optimal path in a large network, a reference path is used for comparison purposes. In this paper
the reference path is found by using the proposed algorithm with a pre-speci®ed value of K. A K
value of 10 was used indicating that the best path within these ten is the optimal path. Obviously,
for a real situation a more detailed computational study should be conducted to identify an
appropriate value for K.

Three hundred random O±D pairs with random departure time were generated and their
respective expected minimum paths were calculated using the proposed algorithm. Figure 10
shows the relationship between the K value and the percentage of time the optimal path was
found. For example, when the K value is equal to one, there is a 30% chance that the minimum

Fig. 10. Percentage correct vs K value.

Fig. 11. Relative error vs K value.
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path route would not be identi®ed whereas if K is increased to ®ve this percentage decreases to
5%. It should be note that a K value of one corresponds to the case of simply using a standard
minimum path algorithm.

Figure 11 shows the relative error of the solution as a function of the K value. It can be seen that
the relative error is very small. For example when K is equal to one, the relative error is very small
(less than 0.3%). The average absolute error for a K value of one is approximately 5 s with a
maximum error of 120 s with respect to the average travel time 1788 s. It may be seen in Figs 10
and 11 that the greatest jump in accuracy occurs at the lower K values (i.e. more improvement
when K increases from one to two than when K increases from nine to ten).

The computation time of the proposed algorithm with respect to the K value is shown in Fig. 12.
It can be seen that the increase in CPU time is signi®cant. For example, when K is equal two the
increase in CPU time is approximately 90%. However, it should be kept in mind that this algo-
rithm is considerably faster than a complete enumeration.

7. CONCLUDING REMARKS

This paper examined the dynamic and stochastic shortest path problem (DSSPP) of ®nding the
expected shortest paths in a tra�c network where the link travel times are modeled as a con-
tinuous-time stochastic process. A set of probability-based approximation models was developed
to estimate the mean and variance of the travel time of a given path based on the mean and var-
iance of the link travel times. It was shown that the DSSPP is computationally intractable and that
it cannot be solved exactly using standard shortest path algorithms. This paper proposed a heur-
istic algorithm for solving the DSSPP where the dynamic and stochastic attributes of the link tra-
vel times are modeled by the mean and variance of the link travel time as a function of time of day.
The algorithm is based on k shortest path algorithm and its performance was tested on a realistic
network with hypothetical travel times. The following points were illustrated in this paper:

1. The standard shortest path algorithms may fail to ®nd the minimum expected paths in a
dynamic and stochastic network. The solution error by the standard shortest path algorithm
was shown to be small for the sample problem (approximately 5s on average). This may
result from the fact that the dynamic link travel times used in the sample problem change
relatively slowly with respect to time of day.

2. The proposed heuristic algorithm provided improved solutions with an acceptable increase in
overall computation time. When the number of paths was increased from one to two the
relative error decreased by approximately 18% and the calculation time increased by 90%.

Fig. 12. CPU time vs K value.
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3. As shown in this paper the use of standard shortest path algorithms in dynamic and sto-
chastic tra�c networks is incorrect. However, from a practical perspective the standard
shortest path algorithms may be acceptable. This will be particularly true if the change of
travel time as a function of time of day on the links in the network is moderate.

4. The travel time estimation models developed in this paper provided improved solutions as
compared to the traditional methods. The data required by the new models, including the
mean and standard deviation of the link travel time as a function of time of day, is infor-
mation typically available from most ATMS. It can be expected that these models would
play an important role in situations where the estimation of the travel time variance is also
necessary.

It should be noted that the above conclusions are based on hypothesized link travel time data. It
would therefore be necessary to conduct further studies based on real travel time data before any
general conclusions may be made. It also would be bene®cial to conduct the experiments during
incident conditions to identify whether this technique has potential bene®ts in these situations.
Finally, another important direction for further research would be to extend the proposed models
and algorithm to take account the correlation of travel times between individual links for a parti-
cular point in time.
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